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a b s t r a c t

Being an optimizing technology, model predictive control (MPC) can now be found in a wide variety of
application fields. The main and most obvious control goal to be achieved in a wastewater treatment plant
is to fulfill the effluent quality standards, while minimizing the operational costs. In order to maintain the
effluent quality within regulation-specified limits, the MPC strategy has been applied to the Benchmark
Simulation Model 1 (BSM1) simulation benchmark of wastewater treatment process. After the discussion
of open loop responses of outputs to manipulated inputs and measured influent disturbances, the strate-
gies of feedback by linear dynamic matrix control (DMC), quadratic dynamic matrix control (QDMC) and
nonlinear model predictive control (NLMPC), and improvement by feedforward based on influent flow
rate or ammonium concentration have been investigated. The simulation results indicate that good per-
formance was achieved under steady influent characteristics, especially concerning the nitrogen-related
SM1 benchmark species. Compared to DMC and QDMC, NLMPC with penalty function brings little improvement. Two
measured disturbances have been used for feedforward control, the influent flow rate and ammonium
concentration. It is shown that the performance of feedforward with respect to the influent ammonium
concentration is much higher than for the feedforward with respect to the influent flow rate. However,
this latter is slightly better than the DMC feedback. The best performance is obtained by combining both
feedforward controllers with respect to the influent ammonium concentration and flow rate. In all cases,

rman
the improvement of perfo

. Introduction

The control of wastewater treatment plants is difficult because of
requent and important changes of load in flow rate and quality and
lso because of the biological processes which are fundamentals of
he plant operation. Many control strategies have been proposed
n the literature for wastewater treatment plants [1–4], but their
valuations and comparisons are difficult. This is partly due to the
ariability of the influent, to the complexity of the physical and
iochemical phenomena and to the large range of time constants
from a few minutes to several days) which are inherent in the acti-
ated sludge process. Furthermore, the proposed control strategies
iffer with respect to their objectives and methods. Sometimes, the
bjectives are limited like dissolved oxygen control [3,5] and nitrate

ontrol [6–12], sometimes they are very large extending beyond the
astewater treatment plant like the integrated hierarchical pre-
ictive control of a wastewater treatment plant together with the
ewer system [2]. The control methods include simple control [13],

∗ Corresponding author. Fax: +86 20 87110961.
E-mail address: ppwhshen@scut.edu.cn (W. Shen).

385-8947/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.cej.2009.07.039
ce is correlated with more aeration energy consumption.
© 2009 Elsevier B.V. All rights reserved.

feedforward–feedback control [14], linearized and optimal control
[15,16], nonlinear control [17,4], fuzzy control [18], optimal control
[19], supervisory control [20], model predictive control [1,5,2,11]. It
should be noted that few experimental validations have been per-
formed [20] for many reasons including lack of adequate hard or
soft sensors, actuators and process control systems. However, the
need for better instrumentation, control and automation is recog-
nized. In addition, the controlling results lack standard criteria to
be evaluated. A benchmark, i.e. a simulation environment defin-
ing a plant layout, a simulation model including influent loads, test
procedures and evaluation criteria has been proposed within the
framework of COST Actions 682 and 624 [21–23].

MPC is widely used and accepted in the industry in general and
process industries in particular. A general objective of MPC schemes
is to maintain the controlled variables close to their set points while
respecting process operating constraints. MPC was first introduced
by [24] as model algorithmic control (MAC) where the accent was

set on the key role of digital computation and modelling. [25] gives a
good overview of both linear and nonlinear commercially available
MPC technologies. More and more severe regulations are imposed
to wastewater treatment plants that are inherently multivariable
processes. Clearly, an optimizing control is desired and constraint

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:ppwhshen@scut.edu.cn
dx.doi.org/10.1016/j.cej.2009.07.039
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Fig. 1. The BSM1 benchmark layout.

andling is necessary to respect the environmental norms. Accord-
ng to [20] who performed a real application, the first objective of
he supervisory control strategy is to optimize the existing plant
apacity, to improve the process quality and effluent quality with
inimum cost. Thus, MPC is a very suitable control technology for

his application [1] in order to keep the plant running effectively
nd to meet the discharge quality standards. MPC has also been
mplemented on several complex nonlinear environmental systems
26,11,27]. [5] implemented dissolved oxygen control of the acti-
ated sludge system using MPC. However, their works have been
ocused on the dissolved oxygen control rather than based on the
ssumption of a multivariable control problem. Rather than focus-
ng on a single problem such as dissolved oxygen control or nitrate
ontrol, this study aims at considering the wastewater treatment
lant in a large multivariable frame subject to environmental and
perational constraints. However, it is limited to the wastewater
reatment plant and does not consider the sewer systems [2]. In
his paper, three different kinds of MPC strategies are used: DMC
lgorithm without constraints which represents the first generation
f the MPC algorithms, a QDMC version with hard linear constraints
hich is considered to be a representative of the second generation

f the MPC algorithms, a NLMPC version with hard constraints on
he inputs and soft constraints on the outputs. Furthermore, as the
nfluent flow rate and ammonium concentration can be considered
s measured disturbances, feedforward has been added to previous
eedback MPC controls in an effort to compensate these large influ-
nt time variations. Thus, feedback and feedforward controls will
lso be compared.

. Benchmark of wastewater treatment plants

The International Association of Water Quality (IAWQ) and
OST (European Cooperation in the field of Scientific and Techni-
al Research) 624 group have established acknowledged models
epresenting the behavior of wastewater treatment plants that can
e used to test estimation, diagnostic and control strategies. COST
24 group published a benchmark [28,29,13], also available on the
ollowing web site: http://www.ensic.inpl-nancy.fr/COSTWWTP/.

The simulated wastewater treatment plant possesses a series of
ve reactors, the first two ones being mixed and non-aerated, the

hree following ones being simply aerated; this group is followed
y a secondary settler (Fig. 1). Two recycle streams complete the
rocess. The model of the biological process is Activated Sludge

odel #1 (ASM1) of IAWQ and includes 13 components and 8 reac-

ion processes. Typical feed disturbances for dry, stormy or rainy
eather are available as representative files of 14 days with a sam-
ling period of 15 min. Performance criteria have been established
oncerning the effluent quality, constraints corresponding to the
Journal 155 (2009) 161–174

operating norms are imposed on the effluents and operating costs
are proposed.

The importance of wastewater treatment control is emphasized
by many authors. The process dynamics is complex. The choice of
the control structure is important. Moreover, operating constraints
and the nonlinear behavior of the process make the process control
problem very attractive for performing multivariable algorithms
such as MPC ones.

3. Model predictive control

The MPC strategy was first introduced by [24]. Very soon after,
DMC was published [30] and implemented at Shell as a multi-
variable computer control algorithm. Different forms of MPC are
possible, based on step or impulse responses, or under state-space
forms. The principle is well known in the literature [31–33] and
only a brief description with main features is presented here. DMC
[30] simply minimizes a quadratic criterion in absence of con-
straints. Being an extension of DMC, QDMC [34] minimizes the
same quadratic criterion in the presence of linear constraints. In the
present study, different forms of feedback MPC have been imple-
mented [35]: DMC, QDMC and NLMPC. Furthermore, a modified
version of QDMC incorporating feedforward has been developed.

In the present study, truncated step responses are used to repre-
sent the linear model of the process. Typically, they can be obtained
from open loop simulations if a nonlinear model of the process
based on first principles is available or from response measure-
ments to variations of manipulated inputs in an existing plant.

In DMC, a quadratic criterion based on the errors between the
estimated outputs ŷ(k + i|k) and the references yref(k + i) over the
prediction horizon Hp is defined as

J =
Hp∑
i=1

(ŷ(k + i|k) − yref(k + i))
2

(1)

and is minimized with respect to the variation �u(k) of the input
considered over a control horizon Hc which is much smaller than
Hp. The output prediction ŷ(k + l|k) means a predicted controlled
outputs for the future sampling instant k + l, performed at the cur-
rent instant k. It can be decomposed as a steady-state term, a term
as effect of past inputs, a term as effect of future inputs, and a term
of disturbances.

ŷ(k + l|k) = yss +
Hm−1∑
i=l+1

hi �u(k + l − i) + hHm (u(k + l − Hm) − uss)

+
l∑

i=1

hi �u(k + l − i) + d̂(k + l|k) (2)

where Hm is the model horizon which should be larger or equal to
the prediction horizon.

The output prediction y∗(k + l|k) based on past inputs is defined
as

y∗(k + l|k)=yss+
Hm−1∑
i=l+1

hi �u(k + l − i)+hHm (u(k + l − Hm)−uss) (3)
Note that the steady-state terms uss and yss do not intervene if devi-
ation variables are used. Finally, the vector of the output prediction
ŷ(k + l|k) based on past and future inputs is related to the vector of
the output prediction y∗(k + l|k) based on past inputs, to the vector

http://www.ensic.inpl-nancy.fr/COSTWWTP/
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f inputs �u(k), and to the vector of predicted disturbances by

ŷ(k + 1|k)

...

ŷ(k + Hp|k)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

y∗(k + 1|k)

...

y∗(k + Hp|k)

⎤
⎥⎥⎦

+A

⎡
⎢⎢⎣

�u(k)

...

�u(k + Hc − 1)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

d̂(k + 1|k)

...

d̂(k + Hp|k)

⎤
⎥⎥⎦ (4)

here A is the dynamic matrix whose elements are taken from the
tep response coefficients hi of the plant outputs to the manipulated
nputs [35]. For a single input–single output system, the dynamic

atrix A with the dimension of Hp × Hc is equal to

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 0 · · · 0

h2 h1

...

...
...

. . .

hHc hHc−1 · · · h1
...

...
...

hHm hHm−1 · · · hHm−Hc+1

...
...

...

hHm hHm · · · hHm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

or a multi-input–multi-output system of dimension nu × ny, the
ynamic matrix becomes

=

⎡
⎢⎢⎣

A11 · · · A1nu

... Aij

...

Any1 · · · Anynu

⎤
⎥⎥⎦ (6)

here i refers to the controlled output yi and j to the manipulated
nput uj . In classical feedback MPC, it is assumed that future distur-
ances are unknown, therefore the disturbance value is assumed to
e constant over the prediction horizon.

ˆ(k + l|k) = d̂(k|k) = ym(k) − y∗(k|k) ∀ l = 1, . . . , Hp (7)

efining the error e(k), a linear system can be written⎡
⎢⎢⎣

yref(k + 1) − y∗(k + 1|k) − d̂(k|k) = e(k + 1)

...

yref(k + Hp) − y∗(k + Hp|k) − d̂(k|k) = e(k + Hp)

⎤
⎥⎥⎦

= e(k + 1) = A�u(k) (8)

n absence of constraints, the least-squares solution of this DMC
ptimization problem yields the future input move vector:

u(k) = (ATA)
−1AT e(k + 1) (9)

nly the first calculated input �u(k) will be implemented at time
.

An attractive feature of MPC is the possibility to handle con-
traints. QDMC introduces a modification of the quadratic criterion

s the sum of a performance term and an energy term. Furthermore,
ypical hard constraints are considered, including those affecting
he manipulated variables:

min ≤ u ≤ umax (10)
Journal 155 (2009) 161–174 163

and their moves

�umin ≤ �u ≤ �umax (11)

These constraints correspond to valve positions and velocities. They
cannot be violated. All these constraints can be gathered as a sys-
tem of linear inequalities incorporating the dynamic information
concerning the projection of constraints:

B �u(k) ≤ C(k + 1) (12)

In presence of hard constraints (10) and (11), the QDMC problem
can be thus formulated as quadratic programming, such as

min
�u(k)

J =
[

1
2 �u(k)TH �u(k) − g(k + 1)T �u(k)

]
(13)

subjects to constraints (10) and (11). H is the Hessian matrix (in
general fixed) which is equal to

H = AT�T�A + �T� (14)

where A is the dynamic matrix, � is a diagonal matrix of weights
for the outputs, � is a diagonal matrix of weights for the inputs,
and g is the gradient vector which is equal to

g(k + 1) = AT�T�e(k + 1) (15)

This quadratic programming problem can be solved efficiently by
available numerical subroutines.

Real controlled processes are usually nonlinear, and a linear
feedback controller designed for a vicinity of the assumed operating
point is not always sufficient. In the 1980s, attempts to formulate
MPC algorithms for nonlinear process models appeared, especially
within the community connected with development and applica-
tions of the DMC algorithm in chemical industries. In the case of
the benchmark of the wastewater treatment plant, it is not autho-
rized to directly consider the full nonlinear model for control.
Therefore, a nonlinear model can be used only after it is obtained
independently from the true model of the plant, for example by
some reduction technique obtained from plant responses, like in
[36]. Two internationally accepted process models were chosen in
the simulation benchmark. The IAWQ’s Activated Sludge Model #1
(ASM1) was chosen as the biological process model [37] and the
double-exponential settling velocity function of Takács et al. [38]
was chosen as a fair representation of the settling process. In the
present article, only the step responses already used for DMC and
QDMC techniques were retained for all other simulations. When
constraints affect the output variables, it is safer to consider them
as soft constraints rather than hard constraints to avoid the fail-
ure of the nonlinear optimization procedure. Thus, soft constraints
can be violated at certain times. The criterion is very similar to Eq.
(13) of the QDMC except that a penalty function with respect to the
predicted outputs is added to the criterion as

0.5 wpy[(|ymax−ŷ|−(ymax − ŷ))2 + (|ŷ − ymin| − (ŷ − ymin))2] (16)

The penalty term is zero when the predicted output ŷ is between
the output bounds ymin and ymax and the penalty function penal-
izes the deviations above the maximum and below the minimum
allowed to the controlled outputs. Thus, the resulting problem is
non-quadratic and necessitates a nonlinear optimization. In this
case, the nonlinear optimization code NLPQL [39] is used. A draw-
back of this technique is that the robustness of the code is less
guaranteed and the computation is much slower than with the
normal quadratic programming. Consequently, this MPC strategy

is called NLMPC because of the nonlinear optimization involved,
even if the model of the process remains the same dynamic matrix
as for DMC and QDMC. The potential of NLMPC is larger than the
present use and a nonlinear model of the process could have been
implemented.
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Fig. 2. Disturbances of influent flow rate and am

The different MPC codes: DMC without constraints, QDMC with
ard linear constraints, NLMPC with hard and soft constraints,
PC with feedforward, have been developed as general Fortran

rograms which are able to take into account most types of sit-
ation, including open-loop inverse responses, hard constraints on
he inputs and on their variations, soft constraints on the outputs,
eedforward effects and consider any number of inputs and outputs.

. Influent load

Simulated influent data are available in three 2-week files
erived from real operating data [40,41]. The files were generated to
epresent three different weather situations. The sampling period
s 0.25 h. The file which was used in the present study was only
epresentative of a dry weather period. The file exhibits character-
stic diurnal variations in flow and component concentrations. Also
ncorporated in the file is a substantial (20%) decrease in flow and
oad during the “week-end”. Fig. 2 shows two variables from the
ry weather file (flow rate and ammonium concentration).

Two typical situations were studied: in the absence and in the
resence of measured disturbances. The disturbances were given by
ata files representing typical real situations of normal dry weather
ith flow rate and concentration fluctuations. It must be noticed

hat the variations of the disturbances around a mean value are
onsiderable and present more or less a periodical aspect based on
1-day period.

. Control strategy

As a multivariable input–output system, the control system is
escribed as following.

.1. Bounds, measurements, outputs, inputs and disturbances
The Linear DMC, QDMC and NLMPC strategies have been tested
o maintain the effluent qualities within regulation-specified limits,
hatever the variations of the incoming wastewater. The limits on

mmonium concentration, suspended solids concentration, BOD5
oxygen demand of biodegradable pollutants over a 5-day period),

able 1
et points, bounds, weights for the controlled outputs.

ontrolled output y Upper bound Set poin

mmonium [NH] (mg/l) 4 1.7
otal nitrogen [N]tot (mg/l) 18 14
uspended solids [SS] (mg/l) 30 12.5
OD5 (mg/l) 10 2.7
OD (mg/l) 100 47.5
m concentration for a dry weather influent file.

COD (chemical oxygen demand) and total nitrogen concentration
are given in Table 1.

The two measured variables are the dissolved oxygen concen-
tration in the last unit of the bioreactor and the nitrate level in the
second non-aerated unit.

The five controlled variables are the ammonium concentration,
the concentration of suspended solids, the BOD5, the COD and the
total nitrogen in the effluents.

The seven manipulated variables are the internal recycle flow
rate qa, the external recycle flow rate qr , the wastage flow rate qw ,
the mass transfer coefficients in the third, fourth and fifth aerated
tanks respectively kla3, kla4, kla5, the carbon source supplementa-
tion flow rate q2in. The mass transfer coefficient corresponds to the
efficiency of aeration in a given aerated tank.

In order to improve the controller performance, two measur-
able disturbances have been considered: the influent flow rate q0
and the influent ammonium concentration [NH]0. The feedforward
controller (Section 6.5) will specifically make use of these measure-
ments.

5.2. Constraints on the manipulated inputs and outputs

The limits of the effluent quality indicators are transformed into
fixed set points, lower than the bounds (Table 1) with the final
objective in mind that, by this way, these upper bounds will be
respected most of the time. The ammonium concentration and total
nitrogen are the two most sensitive outputs and react very strongly
to disturbances. The discussion will focus mainly on ammonium
concentration as the total nitrogen concentration in general varies
in a similar way. Their weights �ii, refering to Eq. (14), are larger
than other weights in the MPC strategies. Saturations concerning
the manipulated inputs are given in Table 2.

5.3. Horizons and weights
The prediction horizon Hp, control horizon Hc and model hori-
zon Hm are taken respectively as 45 sampling periods, 3 sampling
periods and 48 sampling periods (Ts = 0.5 h) which represents 1
day behavior (strategy DMC-FB-1 of Table 4 for DMC). The control

t Weight �ii Weight wpy in penalty function

90 1000
50 1000

5 1000
5 1000
5 1000
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Table 2
Saturation limits, weights for the manipulated inputs.

Manipulated input u Minimum value Maximum value Weight �ii

Internal recycle flow rate, qa (m3/h) 1000 4000 100
External recycle flow rate, qr (m3/h) 200 1000 100
Wastage flow rate, qw (m3/h) 10 40 100
Oxygen mass transfer coefficient 3rd unit, kla3 (l/h) 0 15 100
Oxygen mass transfer coefficient 4th unit, kla4 (l/h) 0 15 100
Oxygen mass transfer coefficient 5th unit, kla5 (l/h) 0 15 100
Carbon source supplementation flow rate, q2in (m3/h) 0 0.2 100
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ig. 3. Different phases during the simulation sequence. The plotted output is the
ffluent ammonium concentration.

orizon was taken fixed equal to Hc = 3 as a higher value has little
nfluence on the control performance. Other choices of prediction
orizon and model horizon have been tested (Table 4). For Hp = 93
nd Hm = 96 (2 days), there was no improvement and little modi-
cation of the control performance (strategy DMC-FB-2). For Hp =
41 and Hm = 144 (3 days), the control was very much degraded
strategy DMC-FB-3). QDMC showed the same trend (strategies
DMC-FB-1 and QDMC-FB-2). Due to the estimated time constants
f the open loop responses, Hp = 45 and Hm = 48 seemed a good
ompromise and was retained for all other simulations.

In practice, the inputs and outputs intervening in the criterion
re normalized by their steady-state values to render the choice

f the weights easier. �ii are given in Table 1, all �ii are identical
nd equal to 100 (Table 2). The weights intervening in the penalty
unction which force the process to respect the soft constraints on
he outputs are very large with respect to the other weights so

able 3
teady-state value, step magnitude and duration for the manipulated inputs and measure

anipulated input u Steady-state valu

nternal recycle flow rate (m3/h) 2306
xternal recycle flow rate (m3/h) 769
astage flow rate (m3/h) 16

xygen mass transfer coefficient 3rd unit (l/h) 10
xygen mass transfer coefficient 4th unit (l/h) 10
xygen mass transfer coefficient 5th unit (l/h) 3.5
arbon source supplementation flow rate (m3/h) 0.083

easured disturbance d

nfluent flow rate q0 (m3/h)
nfluent ammonium concentration [NH]0 (mg/l)
Fig. 4. Step response coefficients of effluent ammonium concentration to oxygen
mass transfer coefficient in the third tank for various amplitudes of the oxygen mass
transfer coefficient.

that the penalty function becomes preponderant in the criterion
(Table 1).

6. Simulation results and discussion

All the results have been obtained using the benchmark Fortran
implementation described in [22] except that the differential equa-
tions were integrated with a 5th-order Runge-Kutta routine (fixed
integration step = 0.01 h). DMC, QDMC control and NLMPC were
also used as independent Fortran codes.

Fig. 3 presents the simulation sequence which has been used in
the present work: an open loop stabilization period under constant
inputs (period 1 = [0, 500] h), a closed loop stabilization period in
absence of disturbances (period 2 = [500, 1200] h), two closed loop
dynamic periods in presence of disturbances, in the present case
period 4 = [1536, 1872], each representing 14 days). Period 3 is con-
sidered as a dynamic stabilization period and period 4 is used for
performance evaluation. In fact, the same controller is operated
during the closed loop phase, i.e. from time t = 500 h until the end.

d disturbances.

e Step magnitude Step duration (h)

+10% 24
+10% 24
+10% 24
−4% 24
−4% 24
+4% 24

+10% 24

Step magnitude Step duration (h)

+10% 24
+10% 24



166 W. Shen et al. / Chemical Engineering Journal 155 (2009) 161–174

o oxyg

6

o
s
w
m
k

h

a
1

h

w
t
o
p
M
fi
p
l
m
p

m
o
1

t

F
r

Fig. 5. Step response coefficients of effluent ammonium concentration t

.1. Open loop responses of system

Open loop responses have been obtained from step variations
f the manipulated inputs and measured disturbances around the
teady states. For a given output yi(i = 1, . . . , ny), the step response
ith respect to the manipulated inputs is in fact represented by
eans of the step response coefficients hj,i(k)(j = 1, . . . , nu) at time
(k > 0), i.e.:

j,i(k) = yi(k) − yss
i

u∞
j

− uss
j

(17)

nd similarly, with respect to the measured disturbances dm,j (j =
, . . . , nd) as

′
j,i(k) = yi(k) − yss

i

d∞
m,j

− dss
m,j

(18)

here the superscript ss refers to the steady-state value and ∞
o the asymptotic value at the end of the step response. These
pen loop step responses will constitute the linear model of the
rocess under the form of the dynamic matrix which is used in
PC. In an existing plant, they would be replaced by the identi-

ed responses fitted to the actual input–output responses of the
lant [42] which are obtained after system excitation either in open

oop or in closed loop. Thus, in no case, the nonlinear benchmark
odel is used directly for MPC. It is only used to simulate an existing

lant.
The step magnitude and duration of each manipulated input and
easured disturbance are given in Table 3. The step responses were
btained from t = 1200 h imposing step signals on each input uj(j =
, . . . , nu) and each measured disturbance dm,j(j = 1, . . . , nd).

The concentration of ammonium in the effluent is one of the
wo most sensitive outputs together with the total nitrogen con-

ig. 6. Step response coefficient of effluent ammonium concentration to oxygen mass tra
ate (right).
en mass transfer coefficients in the third (left) and fourth (right) tanks.

centration so that the discussion will focus on it. In the case of a
linear system, the coefficients of the step response are indepen-
dent of the amplitude of the input step. In the present case, in
order to demonstrate the nonlinearity of the process on an exam-
ple, the influence of the amplitude of the input step on the step
response coefficient is shown in the case of the step response of
effluent ammonium concentration to oxygen mass transfer coef-
ficient in the third tank (Fig. 4). It follows that the choice of the
amplitude of the input step may have a large influence on the
open loop model of the process and consequently on the per-
formance of MPC so that this choice has a somewhat arbitrary
character. It has been found that the step responses correspond-
ing to the influences of the internal recycle flow rate qa, the
external recycle flow rate qr , and the wastage flow rate qw on
ammonium concentration (not represented here) are lower by
at least one order of magnitude than the responses displayed in
Figs. 5 and 6. The responses to the oxygen mass transfer coeffi-
cients in the third to fifth aeratated tanks show relatively similar
behaviors, however the response of the fifth tank is approximately
two to three times larger than that of the previous tanks. The
response to the carbon source supplementation flow rate q2in dis-
plays an important influence of this variable. For finite steps of
all manipulated inputs except for external recycle flow rate and
wastage flow rate, in general, the responses of the plant are clas-
sical and stable. However, because of the direct influence of the
concerned manipulated input on the studied output, the response
(not shown) of the effluent ammonium concentration to the step
of external recycle flow rate qr possesses an inverse response of

small magnitude. This influence of inverse response is avoided
in the later MPC control system by considering that an inverse
response is close to a response of a delayed system and by neglect-
ing the first transient inverse behavior. For the step of wastage
flow rate, the low response of effluent ammonium concentra-

nsfer coefficient in the fifth tank (left) and to carbon source supplementation flow
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ion is apparently unstable at least during the period of time
onsidered.

In order to improve the controller performance, the characteris-
ics of two measurable disturbances have been considered. As the
ffluent ammonium concentration is one of two most sensitive out-
uts, the disturbance of influent ammonium concentration [NH]0
lays an important role and is considered as a measurable vari-
ble of the plant. The second measured disturbance is the influent
ow rate q0. It is a good indication of changes in the wastewa-

er characteristics which are related to human activity. In Fig. 7,
he step response coefficients h′ of effluent ammonium concen-
ration to the measured disturbances of the influent flow rate q0
nd the influent ammonium concentration [NH]0 are represented.
t is clear that the influence of the influent ammonium concen-
ration is larger by one order of magnitude than the influence of
he influent flow rate. It has also been found that the shapes of
he responses are dependent on the amplitudes of the respective
isturbances, which again demonstrates the nonlinear behavior of
he process. In practice, large disturbances of influent flow rate
0 and influent ammonium concentration [NH]0 (Fig. 2) perturb
he process, with respective relative variations of [−46%, +74%] and
−31%, +56%] around the steady-state value. Consequently, the mag-
itudes of the disturbance steps used to obtain the values of the
tep response coefficients were chosen large and were equal to 10%

Table 3). The responses of effluent ammonium concentration to a
nite step of both the influent flow rate and the influent ammo-
ium concentration can be considered as second order responses
ith delay (Fig. 7) or even close to first order responses with

elay.

able 4
esults obtained with different MPC strategies.

trategy [NH]
(mg/l)

[N]tot

(mg/l)
[SS]
(mg/l)

BOD5

(mg/l)
COD
(mg/l)

MC-FB-1 1.76 14.64 14.18 2.88 49.77
MC-FB-2 1.82 14.48 14.35 2.90 50.00
MC-FB-3 13.08 22.01 10.07 2.49 44.59

DMC-FB-1 1.94 16.25 13.00 2.78 48.20
DMC-FB-2 1.91 15.22 13.55 2.82 48.94

LMPC-FB 2.01 14.25 14.19 2.87 49.79

MC-FF- q0-1 3.06 16.49 12.55 2.73 47.62
MC-FF- q0-2 1.72 14.73 14.36 2.89 50.00

DMC-FF- q0 1.92 15.77 13.06 2.78 48.28

MC-FF-[NH]0-1 7.03 20.56 10.99 2.59 45.66
MC-FF-[NH]0-2 1.30 14.51 14.60 2.93 50.31

MC-FF- q0-[NH]0 1.26 14.64 14.75 2.93 50.50
influent flow rate (left) and to the disturbance of influent ammonium concentration

6.2. Summary of different control strategies

Many different simulations have been performed with different
feedback MPC controllers or combined feedforward-feedback con-
trollers. Some of them have been retained to show quantitatively
their influences on different mean outputs and criteria (Table 4).
They are summarized in the following list.

DMC-FB-1: DMC without feedforward, with Hm = 48, Hp = 45,
Hc = 3.
DMC-FB-2: DMC without feedforward, with Hm = 96, Hp = 93,
Hc = 3.
DMC-FB-3: DMC without feedforward, with Hm = 144, Hp = 141,
Hc = 3.
QDMC-FB-1: QDMC without feedforward, with Hm = 48, Hp = 45,
Hc = 3.
QDMC-FB-2: QDMC without feedforward, with Hm = 96, Hp = 93,
Hc = 3.
NLMPC-FB: NLMPC without feedforward, with Hm = 48, Hp = 45,
Hc = 3.
DMC-FF- q0-1: DMC with feedforward on q0, with Hm = 48, Hp =
45, Hc = 3. The disturbance is considered on a horizon equal to 3
and is not filtered.
DMC-FF- q0-2: DMC with feedforward on q0, with Hm = 48, Hp =

45, Hc = 3. The disturbance is considered on a horizon equal to 3
and is filtered by a forgetting factor (f = 0.98) filter.
QDMC-FF- q0: QDMC with feedforward on q0, with Hm = 48, Hp =
45, Hc = 3. The disturbance is considered on a horizon equal to 3
and is filtered by a forgetting factor (f = 0.98) filter.

Effluent quality
(kg pollution
units/day)

Pumping energy
(kWh/day)

Aeration energy
(kWh/day)

ISWAE criterion
(g m−3 days)

214.6 409.4 4326 1.54 × 103

215.3 433.2 4285 1.58 × 103

497.61 195.2 6398 2.67 × 104

226.6 405.8 5339 1.79 × 103

219.93 430.8 4627 1.60 × 103

217.3 468.5 4125 1.65 × 103

254.3 262.3 5684 2.60 × 103

214.79 404.4 4631 1.63 × 103

222.5 399.7 5259 1.68 × 103

371.6 155.8 6368 6.58 × 103

204.48 394.0 4720 1.57 × 103

204.98 410.8 5022 1.58 × 103
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ig. 8. Outputs in last aerated unit in case of QDMC without feedforward action: a
ine is the set point. The dashed line is the upper bound.

DMC-FF-[NH]0-1: DMC with feedforward on [NH]0, with Hm = 48,
Hp = 45, Hc = 3. The disturbance is considered on a horizon equal
to 3 and is not filtered.
DMC-FF-[NH]0-2: DMC with feedforward on [NH]0, with Hm = 48,
Hp = 45, Hc = 3. The disturbance is considered on a horizon equal
to 3 and is filtered by a forgetting factor (f = 0.98) filter.
DMC-FF- q0-[NH]0: DMC with feedforward on q0 and [NH]0, with
Hm = 48, Hp = 45, Hc = 3. The disturbances are considered on a
horizon equal to 3 and are filtered by a forgetting factor (f = 0.98)
filter.

In the present case, the parameters were tuned on the basis of
he experience gained from the simulations and from the tuning
ules presented in [32]. In this highly multivariable system where

any couplings are present, the tuning is quite delicate even if we
ave tried to work with dimensionless inputs and outputs and to

ollow the evolution of the criteria with time.

.3. Control statistics

Statistics have been calculated concerning the mean efflu-
nt concentrations (Table 4) during the assessment period
[1536, 1872] h) with the sampling period of 0.5 h. The outputs indi-
ated in Table 4 are given with respect to their mean value. The
ain outputs to be followed are the ammonium and total nitrogen

oncentrations. Their relative values should be discussed together
ith the value of the criterion taken as the integral of the sum of
eighted absolute errors (ISWAE) which is defined with respect to

he definition of the effluent quality and are given in the same table.
he ISWAE criterion is defined as

SWAE =
∫ tobs

0

{30|[NH] − [NH]sp| + 10|[N]tot − [N]tot,sp| + 2|[SS]

− [SS]sp|+2|[BOD]−[BOD]sp| + |[COD]−[COD]sp|} dt (19)

here sp refers to the set point. Furthermore, three statistical indi-
ators recommended in a recent version of the benchmark have
een used. The effluent quality index EQI is given as

QI = 1
1000 �tobs

∫ tobs

0

{30[NH] + 10[N]tot

+ 2[SS] + 2[BOD]5 + [COD]}qe dt (20)
here [0, tobs] is the interval of observation, here [1536, 1872] h. qe

s the effluent flow rate. The pumping energy Ep is

p = 1
�tobs

∫ tobs

0

{0.004 qa + 0.008 qr + 0.05 qw} dt (21)
nium concentration (left) and total nitrogen concentration (right). The continuous

The aeration energy Ea is

Ea = [O]sat

1800 �tobs

∫ tobs

0

{V3 kla3 + V4 kla4 + V5 kla5} dt (22)

where [O]sat is the saturated oxygen concentration. Vi is the volume
of the ith tank.

In general, it is found that the effluent ammonium and total
nitrogen concentrations vary in the same way as the effluent qual-
ity.

6.4. In absence of feedforward controller

In absence of disturbances, in the time interval [500, 1200] h,
the feedback controller performs very well, even under the form
of DMC without any constraint, and drives the outputs towards
their set points in a way similar to classical processes. When the
considerable disturbances which are present in a wastewater treat-
ment plant occur after t = 1200 h, the task of the controller becomes
much more difficult. During this period, the outputs are very sen-
sitive to the strong amplitude of the disturbances. Due to the
large range of time constants inherent in the activated sludge pro-
cess, the occurrence of disturbances causes serious deterioration
of the effluent quality (Fig. 8). In this period, the moves of the
manipulated inputs which are calculated by DMC used without any
constraint are so large that they go beyond the saturation limits
given in Table 2. Consequently, even for DMC, simple constraints
valid only for the last calculated input vector are imposed. They
are sufficient to avoid the explosion of the multivariable controller.
QDMC differs from this slightly modified DMC as the saturation
limits are used as constraints for all the values of the future inputs,
not only the last calculated value. Furthermore, QDMC incorpo-
rates an energy part in the quadratic criterion. Due to the large
range of time constants inherent in the activated sludge process,
the appearance of disturbance causes deterioration of the effluent
quality.

The statistical results show little difference between DMC (strat-
egy DMC-FB-1), QDMC (strategy QDMC-FB-1) and NLMPC (strategy
NLMPC-FB), in absence of feedforward control action. The best
performance for total nitrogen is obtained by the NLMPC strat-
egy (NLMPC-FB) but the worst performance for ammonium is
also by the NLMPC strategy. Other weights for the penalty func-
tion might have resulted in a different way. As all the values or

a given variable are contained in a narrow domain, their differ-
ences cannot be considered as strongly significant and sometimes
an advantage with respect to one of them is counterbalanced by
a drawback on another one. The term of aeration energy is always
much larger than the pumping energy. The effluent quality is well
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eration energy.

elated to the tendency with respect to the ammonium concentra-
ion.

.5. In presence of feedforward controller

In order to improve the multivariable controller performance,
model-based feedforward controller using the information on
easured disturbances has been added to the model predictive

ontroller. This results in a feedforward-feedback controller, sim-
ly noted as feedforward controller in the following. It must be
oted that the feedforward controller has never been used alone.
wo disturbances have been considered for the different feedfor-
ard controllers: the influent ammonium concentration and the

nfluent flow rate.
In the MPC control strategy used here, the measured distur-

ances are considered in a very similar way to the past manipulated
nputs as far as they are measured and their influences on the sys-
em are known by means of the corresponding step responses,
uch as shown in Fig. 7. Thus, it is possible to predict their influ-
nces on the controlled outputs by means of step responses and
he corresponding step response coefficients are incorporated in
n augmented dynamic matrix. In this way, some predicted out-
uts based on the past disturbances can be calculated. A first
ttempt was performed by using the past disturbances exactly
ike the past manipulated inputs. Future measured disturbances
ould be considered as being constant and equal to the last
easured disturbance in the same way as in Eq. (7). However,
hose attempts failed and a number of modifications have been
ntroduced.

First, it is necessary to filter the disturbances in order to smooth
heir variations. A moving average filter with forgetting factor
qual to 0.98 and of length Hm = 48 (1 day) has been used. Other
on. Top, left: mean ammonium concentration. Top, right: effluent quality. Bottom:

forgetting factors equal to 0.95 and 0.9 have been tested with-
out improvement. The length of the filter sequence was chosen
in agreement with the model horizon and the apparent period-
icity of the disturbances. The improvement of performance due
to the influence of filtering is obvious in Table 4 where strategy
DMC-FF- q0-1 corresponds to DMC without filtering and DMC-
FF- q0-2 with filtering. All other control parameters were exactly
the same. The same behavior was observed when QDMC is used
without filtering or with filtering and only the results of strategy
with filtering are given in QDMC-FF- q0. The impact of filtering on
the effluent ammonium concentration is extreme and accompa-
nied by a large increase of the aeration energy in the absence of
filtering.

Secondly, the equations of the predictors have been modified
with regard to the terms taking into account the measured dis-
turbances which are not considered exactly in the same as the
manipulated inputs. In these conditions, Eq. (2) of the output pre-
diction ŷ(k + l|k) is modified as the sum of a steady-state term, a
term as effect of past inputs, a term as effect of future inputs, a term
as effect of past measured disturbances dm and a term of unknown
disturbances du:

ŷ(k + l|k) = yss +
Hm−1∑
i=l+1

hi �u(k + l − i) + hHm (u(k + l − Hm) − uss)

+
l∑

hi �u(k + l − i)+
Hff −1∑

h′
i �dm(k + l − i)
i=1 i=l

+ d̂u(k + l|k) (23)

where Hff is the feedforward horizon, not necessarily equal to the
model horizon Hm. In Eq. (23), for the feedforward action, the role of
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ig. 10. Comparison of the influence of feedback and feedforward DMC strategies on
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he measured disturbances dm is similar to that of the past inputs
u, whereas the term du stands only for the unmeasured distur-

ances or unmodelled disturbances. The future disturbances will
e part of the future unmeasured disturbances estimated as

ˆu(k + l|k) = d̂u(k|k) = y(k) − ŷ∗(k|k) (24)

ith the output prediction based on past inputs:

ˆ∗(k|k) = yss +
Hm−1∑

i=1

hi �u(k − i) + h′
Hm

(dm(k) − dm,ss) (25)

ncorporating the present measured disturbance dm(k) and its
teady-state value dm,ss.

Thus, the output prediction y∗(k + l|k) based on past inputs and
ast measured disturbances is defined as
∗(k + l|k) = yss +
Hm−1∑
i=l+1

hi �u(k + l − i) + hHm (u(k + l − Hm) − uss)

+
Hff −1∑
i=l+1

h′
i �dm(k + l − i) (26)

ow, in a similar way to Eq. (8), the future errors can be defined as

(k + l) = yref(k + l) − y∗(k + l|k) − d̂u(k|k) (27)
fluent ammonium concentration. Top, left: simple feedback. Top, right: feedforward
e continuous line is the set point. The dashed line is the upper bound.

Globally, Eq. (4) is modified as⎡
⎢⎢⎣

ŷ(k + 1|k)

...

ŷ(k + Hp|k)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

y∗(k + 1|k)

...

y∗(k + Hp|k)

⎤
⎥⎥⎦ + A

⎡
⎢⎢⎣

�u(k)

...

�u(k + Hc − 1)

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

d̂u(k + 1|k)

...

d̂u(k + Hp|k)

⎤
⎥⎥⎦ (28)

where a separation of measured and unmeasured disturbances has
been introduced.

Recall that the feedforward control is introduced to counteract
the influence of either the influent flow rate q0, or the influent
ammonium concentration [NH]0 or even both of them consid-
ered together. The feedforward strategies have been systematically
tested with feedback DMC for different values of the feedforward
horizon. The results are shown in Fig. 9 and quantitative results
are given in Table 4. As the favorable influence of disturbance fil-
tering by moving average filter with forgetting factor has already
been demonstrated, all following cases are performed with distur-
bance filtering. For values of the feedforward horizon Hff lower
than 20, the performances of the different controllers are little
influenced. When Hff exceeds 20, in general, a marked degrada-
tion occurs (Fig. 9). The worst performance concerning the effluent

ammonium concentration is reached by DMC with simple feedback
(strategy DMC-FB-1), slightly improved by DMC with feedforward
on q0 (strategy DMC-FF- q0-2), neatly improved by DMC with feed-
forward on [NH]0 (strategy DMC-FF-[NH]0-2) and again slightly
improved by DMC with feedforward on both q0 and [NH]0 (strategy
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MC-FF- q0-[NH]0). Thus, by far, the most important disturbance
o be compensated is the influent ammonium concentration [NH]0,
hich is also visible on the open loop response (Fig. 7). The improve-

ent due to the consideration of the influent q0 in a feedforward

ontroller is noticeable, but less important. It must also be noticed
hat the improvement of the performance with respect to the efflu-
nt ammonium concentration is performed at the expense of a
arked increase of the aeration energy as expected. The respective
ottom, and from left to right: (a) internal recycle flow rate, (b) external recycle flow
) oxygen mass transfer coefficient in the 4th aerated unit, (f) oxygen mass transfer

influences of the different strategies on the effluent ammonium
concentration are gathered in the single Fig. 10. The improve-
ment of the profile of the effluent ammonium concentration is

very noticeable when the feedforward strategy on both q0 and
[NH]0 is used. Because of the weights on the outputs that were
chosen in the criterion (Table 1), the feedforward effect is much
more visible on the decrease of ammonium and nitrogen concen-
tration which were considered as being of major importance. The
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Fig. 12. Manipulated inputs in the case of DMC with feedforward with respect to the influent flow rate and ammonium concentration. From top to bottom, and from left to
r ate, (d
c rated

s
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t
u
v
D

ight: (a) internal recycle flow rate, (b) external recycle flow rate, (c) wastage flow r
oefficient in the 4th aerated unit, (f) oxygen mass transfer coefficient in the 5th ae

olid constant lines in Fig. 10 correspond to the set points that

hould be followed because of environmental norms. Even with
he best feedforward controller (strategy DMC-FF- q0-[NH]0), the
pper bounds represented by dashed lines in Fig. 10 are sometimes
iolated, however less often than with the feedback DMC (strategy
MC-FB-1).
) oxygen mass transfer coefficient in the 3rd aerated unit, (e) oxygen mass transfer
unit, and (g) carbon source supplementation flow rate.

The influent ammonium concentration is so important that

the manipulated inputs move considerably after t = 1200 h, when
disturbances are present. Two sets of figures are presented to
emphasize the difference between simple feedback DMC (strat-
egy DMC-FB-1) (Fig. 11) and DMC with feedforward on both q0
and [NH]0 (strategy DMC-FF- q0-[NH]0) (Fig. 12). For all inputs,
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he saturation limits are reached much more often with strategy
MC-FF- q0-[NH]0 than with strategy DMC-FB-1, in spite of the

arge domain which was attributed for each manipulated input.
he stronger variations of kla5 are particularly noticeable. Thus, to
e able to decrease the mean ammonium and total nitrogen con-
entrations, the feedforward strategy demands much energy. This
s also confirmed in Table 4 where the aeration energy of feed-
orward strategies DMC-FF- q0-2, DMC-FF-[NH]0-2 and DMC-FF-
0-[NH]0 respectively exceed by 7%, 9% and 16% the aeration energy
f feedback control DMC-FB-1.

. Conclusions and future work

This paper outlines the results of MPC strategy using BSM1 sim-
lation benchmark of wastewater treatment plant. The strategies of

inear DMC, QDMC and NLMPC in the case of without and with feed-
orward compensation have been tested. After a period of steady
nfluent characteristics, large disturbances of the influent charac-
eristics taken from a dry weather file are imposed. The simulation
esults presented in this paper indicate that all the model predictive
ontrollers perform well during the first period of steady influent.
owever, in the presence of large disturbances, the control perfor-
ance is extremely modified. Even, feedback DMC needs to impose

ounds on the inputs at control time to avoid explosion. QDMC does
ot bring any advantage compared to DMC. NLMPC with strong
enalty on the effluent ammonium and total nitrogen improves the
erformance with respect to these latter at the expense of more
nergy. Finally, the modified feedback DMC proves to be very sat-
sfactory even when compared to the more complex QDMC and
ven to NLMPC. Feedforward control with respect to the measur-
ble disturbances of the influent ammonium concentration or flow
ate or both of them has been added to feedback DMC under a form
lose to that of the past manipulated inputs in the expression of the
redicted outputs. It has been found that the disturbances need
o be filtered, which is performed by a moving average filter with
orgetting factor. Moreover, a specific horizon different from the

odel horizon had to be included for the use of the measured dis-
urbances in the feedforward controller. As expected from the open
oop responses, feedforward with respect to ammonium concentra-
ion is much more efficient than feedforward with respect to flow
ate. However, this is performed at the expense of a larger aeration
nergy consumption. The best feedforward strategy is obtained by
onsideration of both influent ammonium concentration and flow
ate as measured disturbances in the feedforward strategy. Also,
n the feedforward case, the bounds on the inputs are very often
eached.

The influent flow rate can be easily measured on a plant and is a
ood indication of changes in the wastewater characteristics related
o human activity. However, the influent ammonium concentration
as more influence than the influent flow rate, so that in the case
here the influent ammonium concentration is not measured, its

stimation might require the development of an observer, based on
everal other easier measurements.
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